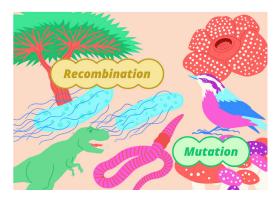
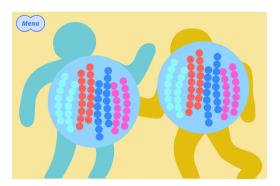
Reproduction and Variation

Print version

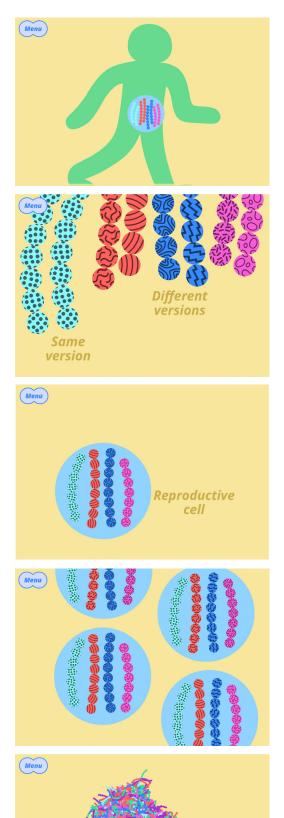

INTRODUCTION

How boring would it be if everyone were genetically identical clones? Thankfully, that's not likely to happen.

When people reproduce, there are mechanisms built in for making genetic variation. **Genetic** variation leads to **trait** variation.


That's why, aside from identical siblings, every person is genetically unique.

Having genetic variation is so important to a species' survival that all living things have some way of adding variation when they reproduce.


There are two ways this happens: through **recombination** and **mutation**.

And which of these two things an organism does depends on whether it reproduces alone or with a partner.

RECOMBINATION

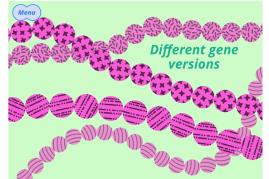
You can think of recombination as taking all the possible gene versions from **two parents...**

...and **randomly shuffling** them into offspring.

This happens during **sexual reproduction**, in living things where genes come in pairs. And it comes down to how **reproductive cells** are made.

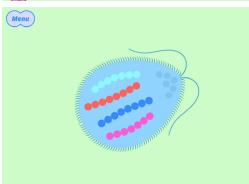
The two genes in a pair can be the same version or different versions. Gene versions are called **alleles**.

Reproductive cells get a copy of one member from each pair.


It's just as likely to be either one, like the flip of a coin. And it's a separate coin flip for each gene.

The shuffling is random, so **each reproductive cell gets a different combination of alleles**

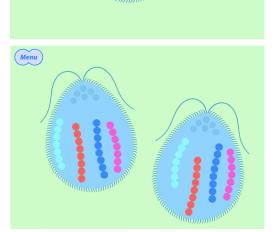
Now imagine this times 20,000. That's about how many gene pairs there are in a person. The chance that two reproductive cells will get the exact same combination of alleles genes is basically zero.

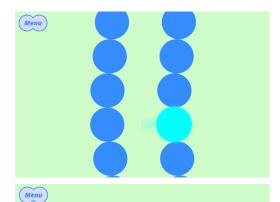

That means **no two reproductive cells are alike**. And it's why, no matter how many kids two parents have together, each one will be **genetically unique**.

MUTATION

Mutation is how different gene versions – called **alleles** – come about in the first place.

Mutation is universal. It's a source of variation for **all** living things, no matter how they reproduce.


Menu


For living things that reproduce **asexually**, mutation is the main way they have for making new gene variations.

Take this creature-it's just one cell with some genes inside.

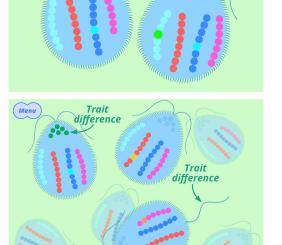
It can just straight-up copy its DNA...

...and divide in two to make genetically identical clones.

Menu

Menu

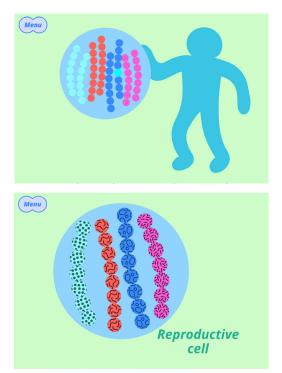
But some of the time, as a copy is being made, a **mutation** happens. This can be as simple as one DNA building block getting mis-copied, like a typo.


And one critter ends up with a gene difference.

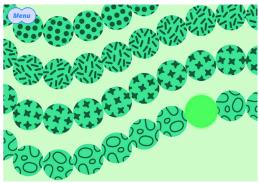
When the critters reproduce again, any differences get copied too.

Now two have the difference.

Each time a living thing copies its genes, there's a chance of mutations happening that cause new gene differences.


If those critters reproduce, their gene differences get passed down.

Even a small change can make a whole **new version of a gene**. And some of these will cause **trait** differences.


That's why, even in living things that reproduce asexually, you can end up with genetic diversity–and trait variations–across a group.

© 2022 University of Utah

Mutation can happen any time a gene is copied–including during **sexual reproduction** as **reproductive cells** are made.

When this happens, it also makes a **new allele** that can be passed on to the next generation.

Mutation acting over many generations can produce **many** alleles.

To see the animated version, visit https://learn.genetics.utah.edu/content/change/reproductionvariation/